
Invariant derivation of the Euler-Lagrange equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L1013

(http://iopscience.iop.org/0305-4470/21/21/003)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) L1013-L1017. Printed in the U K  

LETTER TO THE EDITOR 

Invariant derivation of the Euler-Lagrange equation 

James M Nester 
Department of Physics, National Central University, Chung-Li, Taiwan 32054 

Received 3 August 1988 

Abstract. The tangent bundle geometry is used to obtain a coordinate-free derivation of 
the Euler-Lagrange equation. 

The Lagrangian formulation of classical mechanics is the most fundamental approach 
to dynamics. Nevertheless, the usual practice is to transform to the Hamiltonian form. 
An underlying mathematical reason is that phase space T*Q (the cotangent bundle 
of configuration space Q )  is canonically a symplectic manifold [l] whereas TQ (the 
tangent bundle) is not. It is this symplectic structure on phases space which gives rise 
to the elegant simplicity of the Hamiltonian formalism. 

Although not as well known, there is also a rich geometric structure on TQ which 
has been studied, in particular, by Klein [2,3] (see also Godbillion [4]). Using this 
structure, the Euler-Lagrange equations may be given an invariant geometric formula- 
tion directly in terms of the (pre)-symplectic geometry determined by a Lagrangian 
function [5] without any reference to the symplectic structure on T*Q. This is 
sometimes necessary since not all Lagrangians L lead to a nice Legendre transformation 
(fibre derivative FL) from TQ to T*Q. In that case there is no Hamiltonian form [5,6]. 

The geometry obtained from a degenerate Lagrangian on TQ is pre-symplectic 
without any natural symplectic extension. The Dirac constraint algorithm [7,8] Gust 
as on the cotangent bundle [9-121) can be invariantly formulated directly on TQ in 
terms of this presymplectic geometry [5]. A central role is played by the second-order 
vector field condition (i.e. q = U )  [13-151. 

While there are geometric coordinate-free studies of these Lagrangian equations 
we know of no coordinate-free derivation of the Euler-Lagrange equation. Our aim 
is to present such an invariant derivation of the Euler-Lagrange equation from the 
usual starting point in physics: extremising the action determined by a Lagrangian 
function. 

Some results, in particular the Euler-Lagrange equation, are most easily obtained 
by first using a coordinate system and then demonstrating suitable covariant transforma- 
tion laws. Modern work, however, has shown the value of coordinate-free geometric 
formulations. Likewise there is also a value in geometrically invariant derivations. Not 
only do they directly show that the result is coordinate independent they also serve to 
clarify certain assumptions. 

First we establish some notation and recall the basic definitions necessary for the 
geometric structures we will use on the tangent bundle. For more details see [2-41. 
For any manifold M let q,,, denote the projection from the tangent bundle TM. A 
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differentiable map f: M + Q induces the tangent map Tf:  TM + TQ. In particular, 
from rQ : TQ + Q we obtain T ~ Q  : T(  TQ) + TQ such that the diagram 

T ( T Q )  T7q T Q  

-1 1.. 
TQ - Q 

TQ 

commutes. This diagram is the foundation for several structures. The vertical sub- 
bundle V( TQ) of the second tangent bundle T (  TQ) is defined by V( TQ) := ker T7Q. 
The vertical lift 6, : TqQ+ V,( TQ) is defined by 

d 
(,( W )  := - ( y  + A W )  

dh 

where q = r Q ( y )  = 7Q( w). From 5 we can construct the almost tangent structure 

Jy:=r$, ,0T7~: T,(TQ)+ T,(TQ) 

which has the properties Im J = ker J = V( TQ),  hence J 2  = 0, and the Liouville canoni- 
cal vector field V on TQ, which is defined by 

v, := 5y(Y 1 for y E TQ. 

A curve C : [ a ,  b ]  + Q prolongs to sections C' of TQ and C" of T(  TQ) .  The vector 
field X := C" on T(  TQ) is special in that it is second order. A second-order vector 
field is characterised by the property T r G  = rT&. A direct application of the above 
definitions leads to the alternate characterisation 

JX = V (1) 

which is more convenient for our purposes. 
We recall that a linear endomorphism A :  TM + TM induces a derivation (with 

grading rank 0) the interior product iA : hPM + hPM on differential forms on M defined 
by 

where X j €  TM, with iJ:=O for any function. Further derivations may be obtained 
from the graded commutators with the basic derivations: the exterior derivative d and 
the interior product with a vector field ix of grading rank+ 1 and -1 respectively. 

On TQ this construction naturally leads to the vertical derivative 

dJ := [ i,, d ]  = iJd - diJ. 

It is easy to verify that 

[ d ,  d J ]  = ddJ + d,d = 0 

[ dJ,  iv]  = djiv + ivdj ij 

[ ix, i J ]  = ixiJ - iJix = ilX 

and that d :  = 0. The remaining basic graded commutator [ iz ,  d ]  = izd + di, is just the 
Lie derivative Zz. 
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For completeness we include the purely tangent space definition of the fibre 
derivative Fg : TQ + T* Q of g : TQ + R: 

Fg(y):= dg(y)O5,: T,Q+R. 

Remark. The fibre derivative may be used to  relate the structures on TQ and T*Q, in 
particular dJg = Fg*6 where I3 is the canonical 1-form on T*Q. In general ddJg = Fg*w 
is only presymplectic whereas w = dI3 is the natural symplectic structure on the cotangent 
bundle. 

To each path C : [a, b ]  + Q a Lagrangian function L :  TQ + R associates an action 

S [  C ]  := L o  C’ dt. (2) 6 
We wish to show the following proposition. 

Proposition. For paths with fixed endpoints the action (2) is stationary for the path C 
iff the Euler-Lagrange equation 

8 := ixddJL+ dEL = 0 (3) 
is satisfied, where X := C” is the Lagrangian vector field on TQ and EL := i&L - L is 
the energy. 

Proox Consider a one-parameter set of paths CA ( t )  in Q with fixed endpoints. They 
determine two vector fields on TQ, the Lagrangian vector field X := C” which satisfies 
the second-order equation condition (1) and the deviation vector field Z := ( d l d h )  CL 
which is characterised by JZ vanishing at the endpoints and the properties 

[ X ,  Z ]  = 0 = [Z, v- J X ] .  (4) 
We wish to find the necessary and sufficient conditions for the action S to be 

stationary: 
b d S  lo=[4 ( d L ( Z ) d t = O .  

(i) For all Z 
(dLIZ) = Z(dLI V )  - ( d E J Z )  = Z(dL(  V )  - (8\Z)+ (dd,LIX, 2) 

= Z ( d L ( V ) - ( 8 ( Z ) + X ( d , L ( Z ) - Z ( d , L ( X ) - ( d & ( [ X ,  21) 
= -(8lZ)+X(dLIJZ)+Z(dLIV-JX)-(dL(J[X, 21) 
= -( 812) + X(dLI JZ)  + (9zdLI V - J X )  + (dLI[ 2, V - J X ] )  - (dLI J [ X ,  21). 

( 5 )  
Hence the vanishing of 8 is sufficient for dS/dh =0, since under the conditions (1) 
and (4) imposed on Z and X all of the terms vanish except 

d 
d t  

X( dLIJZ) = - (dL( JZ) 

which integrates to an evaluation at the endpoints where JZ vanishes. 
(ii) The above calculation does not show that ER = 0 is necessary since Z is not 

arbitrary. In particular we have the restrictions (4). To obtain an arbitrary vector field 
we add JW for any W to 2, then 

(812) = (812 + J W )  - ( S l J W )  = (8lZ+JW)-(i,8( W ) .  ( 6 )  
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and 

Consequently ( 6 )  becomes 

( 81 z) = ( 812 + Jw) - ( iv-jx ddjLl w) 
= ( 812 + Jw) + (i&dJLI v - Jx). 

Using this result ( 5 )  may be written in the form 

(dLIZ) = -( 812 + JW) + (i&dJLI V - J X ) +  (TzdLI V -  J X )  - (dLIJ[X, Z ] )  

+ (dLI [ 2, V - J X ] )  + X (  dLIJ2) 

for all W, 2. With the restrictions that V - J X  = 0, [ X ,  21 = 0, [Z, V - J X ]  = O  and JZ 
vanishes at the endpoints, we have 

Although 2 is not completely arbitrary, Z + JW is. Consequently, dS/dhl,, = 0 with 
V - JX = 0 implies 8 = 0 and conversely 8 = 0 = V - JX implies dS/dh l o  = 0. 

In general the second-order condition plays an essential and independent role. 
Although the Euler-Lagrange equation 8 = 0, via the lemma, does impose a restriction: 

ij8 = iv-jxddjL= 0 

it is not always strong enough to assure that V - J X  vanishes, since ddJL is only 
presymplectic if L is degenerate. Consequently, to guarantee that the action S be 
stationary we must supplement 8 = 0 in general with V - J X  = 0. Together these 
conditions are necessary and sufficient. 

The form of the Euler-Lagrange equation used here corresponds to Hamilton’s 
equations on the cotangent bundle. This form of the equation can be transcribed into 

8 := ixddJL+ dEL = TxdjL-  dixdJL+ d(i&L- L )  = TxdjL-  dL- div-jxdL 

which, along with the second-order condition V -  JX, is equivalent to 

8’ := 2xdJL  - dL. 

This latter form is less convenient geometrically (it depends differentially on the 
Lagrangian vector field) but is more recognisable to physicists. 
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This idea was first considered while at the University of Saskatchewan. Discussions 
with Mark Gotay were most helpful. This present work has been supported by the 
National Science Council of the Republic of China under contract NSC77-0298-M008- 
20. 

References 

[ l ]  Abraham R and Marsden J 1978 Foundations of Mechanics (New York: Benjamin) 2nd edn 
[2] Klein J 1962 Ann. Inst. Fourier 12 1 
[3] Klein J 1974 Symp. Math. 14 181 
[4] Godbillion C 1969 Ge'omhtrie Diflhrentiel et Me'canique Analytique (Paris: Hermann) 
[ 5 ]  Gotay M and Nester J M 1979 Ann. Inst. H Poincarh A 30 129 
[6] Batlle C, Gomis J, Pons J M and Roman-Roy N 1987 J. Phys. A :  Math. Gen. 20 5113 
[7] Dirac P A M 1964 Lectures on Quantum Mechanics (New York: Academic) 
[8] Hanson A, Regge T and Teitelboim C 1976 Accad. Naz. dei Lincei 22 1976 
[9] Gotay M, Nester J M and Hinds G 1978 J. Math. Phys. 19 2388 

[ lo]  Gotay M and Nester J M 1979 Proc. 7th Int. Colloq. on Group Theoretical Methods in Physics (Lecture 

[ l l ]  Sundermeyer K 1982 Constrained Dynamics (Lecture Notes in Physics 169) (Berlin: Springer) 
[12] Batlle C, Gomis J, Pons J M and Roman-Roy N 1986 J. Math. Phys. 27 2953 
[13] Kiinzle H P 1969 Ann. Inst. H Poincare' A 11 393 
[14] Gotay M and Nester J M 1980 Ann. Inst. H Poincarh A 32 1 
[15] Skinner R and Rusk R 1983 J. Math. Phys. 24 2589 

Notes in Physics 94) (Berlin: Springer) p 272 


